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ABSTRACT

The purpose of this work is to present an inversion algorithm for
backscattered ('é%acked'{ seismic data which will reconstruct the velocity
profile in realistic earth conditions. The basic approach follows that of
the original Cohen and Bleistein paper -44919&%5};; that high frequency
asymptotics and perturbation methods are used. However, in the original
paper the perturbation was reiative to a constant reference speed, whereas
the current work uses a reference speed which may vary with depth. This
greatly enhances the validity of the perturbation assumption and hence the
inversion results. On the other hand, the new algorithm enjoys the same

economies and stability properties of the original algorithm, making it very

competitive with current migration schemes.

Four major assumptions are made: () the acoustic wave equation is an
A
adequate model, (if) stacked data has amplitude information worth preserving
fal

2
fairly accurately, (iii) the actual reflectivity coefficients can be

M~
adequately modeled as perturbations from a continuous referemce velocity
which depends only on the depth varisble, and (iv) the subsurface can be
A
adequately modeled as a series of layers with jump discontinuities in the
velocity (or impedance) at these layers.
\ -
While the algorithm is particularly suited for data generated by a

number of reflecting surfaces, its validity for a single reflector is

demonstrated by applying the algorithm to Kirchhoff data for a quite general

surface.
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A key feature of the approach of this paper is the repeated application
of high frequency asymptotic methods; both in obtaining the basic integral
equation describing the unknown velocity correction, and in the inversion of
this integral equation. Perhaps a noteworthy feature is that the underlying
integral equation is in the form of a generalized Fourier integral equation;
and the method for its (approximate) inversion may prove to be applicable to

a wide range of such problems.
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c(z)

D, E, F, G, H(K, z)
f

g(x,z;E 0)

h(x)

(g, ")

K

k, (K, z)

n(z) = ¢(0)/c(2),

r = (x,y,2)
R

R

s, 85

S

ug(§,w)
Ug(Est)
v(x, z)

v

x = (x,y)
z

a(x,2)

GLOSSARY

amplitude of Green'’s function (B-1)
a basic amplitude (14)

inversion amplitude (10)

velocity below reflector (30)
reference velocity (1)

various integrals; see Appendix A
frequency (46)

Green's function for c(z) medium (2)
cylindrical surface (25)
delta-function-like integral (12)

ray parameter (3)

Jn’(z)—x’ (6)

the index of refraction (7)
cartesian (2)

reflection coefficient (26)
reflection coefficient (23)
arclength variables (23)
abbreviation; see (29)
observed scattered field (2)
observed scattered field (45)
velocity (1)

the inversion operator (10)
horizontal cartesian (1)
vertical cartesian (1)

unknown perturbation in velocity (1)

iii

........




reflectivity function (23)

Y abbreviation; see (26)

Y, abbreviation: see (30)

) Dirak delta function; below (12)

5p: bp band-limited distributions (18)

Ac jump in ¢ (31)

&g = (&n) cartesians for observation point at z = 0 (2)
p signed distance from r’' (20)

(K, z) travel time (8)

L ] phase function (14)

w circular frequency (2)
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INTRODUCTION

Carter and Frazer [1984], and Bleistein and Gray [1984] (henceforth BG),

present inversion algorithms which include the effect of a stratified
reference velocity, c(z). Those papers did not address the question of

obtaining accurate values of the reflection coefficient; this is the issue

B .

v. Sy — ——r— =

treated here. Thus, in the language of Bleistein, Cohen and Hagin [1984], k

(henceforth BCH), the earlier algorithms provided structural inversions, the

é location of the sub-surface layers; whereas the present algorithm also

provides an accurate estimate of the reflectivity function, which depicts

S the reflectors and provides an estimate of the reflection stremgths across

the layers.

v
@

Since we employ a perturbation assumption (the "Born Approximation”), the

constant reference speed inversion first described in Bleistein and Cohen

.

[1979a] and reviewed in BCH, is often not adequate at depth. Al though
recursive use of the algorithm is possible and although the results can be
significantly enhanced by suitable pre~ or post-processing (e.g., see Hagin
and Cohen [1984]), extension of the perturbation method to a stratified
reference profile is highly significant. It is far more likely that the
actual velocity function can be well approximated by a stratified reference
velocity than by a constant one, which in turn enhances the validity of the

perturbation assumption and the inversion results. See BG for further

| discussion of this point.

The algorithm presented here has the same structure as the BG algorithm
and hence it can be expected to exhibit the same stability and economy. In
particular, we note that the processing times for this algorithm with depth-

_1_
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dependent background velocity will be comparable to those for & constant
background k-f algorithm. In addition, we shall show below that the
algorithm can be expected to be quite robust even when the "small”

perturbation assumption is violated.

A key feature of our approach to this problem is repeated application of
high frequency asymptotic methods to obtain an inversion formula valid in
the high frequency regime. Discussion of the motivation and justification
for such high frequency approximation may be found in BG and BCH. In
particular, we shall use a ray theoretic Green’s function in formulating our
basic integral equation; equation (2) below. A similar approach was
presented in Clayton and Stolt [1981]. Moreover, since the resulting
integral equation cannot, in general, be inverted exactly, we also use
asymptotic methods for this task. This is carried out in the next section.
It is perhaps noteworthy that this integral equation can be viewed as a
generalized Fourier integral equation; and hence the method of inversion may
prove to be of interest outside the present -context. In the subsequent
section the resulting algorithm is verified (asymptotically) for a quite
general class of reflecting surfaces. A short section on computational
considerations is included. Finally, many of the detailed calculations are

carried out in Appendices A-E.
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HIGH FRBQUENCY INVERSION

Here we describe the formalism for determination of an asymptotic
inversion operator. We employ the same wave equation model as described in

detail in BCH. If v is the velocity in the wave equation, we set

1 -1 [1 + n(x.z)} , x = {x,y) . (1)
2 2 = 2
v (x,z) ¢ (z)
We will also use r = (x,z) = (x,y,2). Here c(z) is the known stratified

refercuce velocity, while a(r) is the desired perturbation correction to the
actual velocity. Furthermore, we retain the assumption of backscatter

("stacked”) data. In this case the basic integral equation for a(r) is (cf.

BCH, equation (8)):

a(r)

ns(g:w) = sz I I a’r g’(;:g;m) , & = (&) (2)

¢*(2)

where all unmarked integral signs are over (—=,®), Here “S denotes the

backscattered field at the location ¢ = (£.nm) on the observation plane, z =
0, and g (the "incident field”) demotes the Green's function corresponding
to the siratification, ¢(z). In contrast to the constant background case, g

cannot be determined exactly; we must use the high frequency assumption.

Fortunately, this assumption is completely justified on the geophysical
exploration scale and has long been used to simplify processing formulas
[ even when it was possible to derive wide band analytic results (see BCH).
We use J. B. Keller's [1978] ray method formalism (see also Bleistein

[1984]), which is the multi-dimensional analogue of the WEB method to obtain

T T vaye——Y

a8 parametric representation of g (see Appendix B):
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eiun'(K.z)
g~ . (3)

4n [ET O £ (K7) E(K2) KK, 2)

Here, if we introduce the transverse distance,
= -] . (4)

then the parameter, K, in (3) is defined as a function of |5 - &) and z by

the ray equation:
x - &] = KE(K, 2) . (s)

Further, the quantity k,(K.z) is given by

EE2 = fo() - & , (& ¢ ') (6)

where in turn, n, the index of refractiom, is

_ ¢(0)
n(z) —'m . (7)

The travel-time, T, is

3
r=?%)_c(x,z) , G = 9___(_D_d_f, (8)
ok,(x.h

and finally, the quantities E and H are likewise integrals involving n and
k’. These integrals, as well as others that occur subsequently, are defined

in Appendix A, There, we also derive some needed relations involving these

quantities.




2 2
We shall not need the extension of k¥ in (6) to the range n (z) < K
3

because our Fourier transforms are integrals over real wave numbers only.

Thus our task is to invert the integral equation,

2ivt (K, z)
e

g o , oo
vg (8 0) = dr= XK, O (K, z) E(K, 2) H(K, 2) )

g

LTy

for af(r) in terms of the data, us(g.w). Again, the ray parameter

K is defined by (5).

Since the phase in (9) resembles that of a Fourier transform, we are

motivated to seek an asymptotic inversion operator W of the form:

Wing (1) ~ | [ a’e [ au Bz o 280 E2D w0, (10)

where the amplitude B(r’,¢) and value K' must be determined. Condition (5)
above suggests that K’ satisfies |5' - &] = K'E(K',z). In (10) we have
introduced primes to avoid confusion with the integration variables in (9).

Applying W to both sides of (9) and writing out the right side explicitly we

have:
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[ B S B}

alr’) = Wlugl(z") ~ 12 Idw [[d’g l[[d’r
16n

alr) exp(2iw[t(K,z)-t(K’,z")]}
3 o B(g,t')

¢ (z) k’(K.O)kS(K.z)E(K.z)H(K.z)

(11)
= [ [ [ d,r a(r) I(z,z’)s where
2iwlc(K, z)-x(K',z")]
1 2 B(E"g) °

I(g, ') = T | do o 't — . (12)

16n c (z)k,(x.O)k,(K.z)E(K.z)H(K.z)

Clearly, if (11) is to hold, then I(r,r’') must represent the 3-dimensional
delta function, 8(z-r’'). Hence our task is to find B = B(r',f) and K’, so

that this is the case.

First a comment about the assumed form of B, i.e., B(r', &) where

£ =(x,y,2z) and £ = (£,7). In attempting to invert (9) for a(r') onme would

generally expect B to also involve wo. However, our experience with
canonical problems (e.g. c(z) = constant) suggests that B is independent of

w, and the work to follow confirms this.

In (11) and (12) we must acknowledge that in Geophysical applications o
is confined to the high frequency regime (e.g. see BCH for details). Hence
we may evaluate the asymptotic (large w) approximation to the { integral in
(12) by stationary phase. For convenience we will think of o as the "large

parameter” in our asymptotics to follow. More precisely, it is important
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that the dimensionless parameter 2uL/c(0) be "large”, where L is a typical
length scale of the problem. This is discussed more fully in BG. The

details of the stationary phase calculation are carried out in Appendix D.

The conclusions are:

1) K' = K. Geometrically, this stationarity condition says that for given r

and r’, £ = ¢ is chosen so that r, r'’ and (§ ,0) lie on the same ray.
s - s

See Fig. 1. Since K' = K we will use only K hereafter. Hence, along

with (5), we now have

Iz* - | = KE(K,z") . (13)

2) The asymptotic approximation to (12) is as follows where E’' = E(K,z’), K’
= H(K,z') and ;s symbolizes that the stationarity condition, K' = K, is

to be applied:

I(Et{') ~ 13 Idw wl [ib(ztf') e2i(o[1:(x,z) - 'C(K.z')]] ,
16n o

where

B nc(0) sgn(z'-z) (E'H'/EH)*

¢*(2) k,(K,0) k (K2 [(E-E)(B - 8]’

(14)

b(r,r') =

/a2 °

This expression for I(r,r’') will simplify dramatically after we perform

the w integration., At this point we have
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b(r,r’) .
=r= 2 » - » '
Ir,g') ~———— [ do iw etivlv(Kez) = T(K2)] (15)
16n
If we denote t' = t(K,2'), those familar with distributions will recognize
the sbove w integral as the distribution
n n d
—2-8'(1‘—1:') =7 Eﬁ(t—t ) (16)

where & is the standard delta function. The distribution in (16) has the

sifting property that, for any differentiable f(t),

[ f(x) 8'(t—t°)dt = - f'(to) . (17)

We will use this property shortly. We now have

b(z. ') ,
I(c, ') ~ ———————-SB(t-t') (18)
32n

where the subscript B serves as a reminder that, in application of these
results the frequency w will actually be band-limited. Hence the o integral
in (15) is proper and, consequently, the resulting distribution 8' is in
fact a band-limited version (i.e., a regular function). These matters have
been discussed in Cohen and Bleistein [1979b], Bleistein [1984] and BCH

[1984]. We will use the notation SB and SB for this reason, but proceed as

-y e ptgmy -t 2,




if all the action in I(r,r’') takes place as r > r'.

If one turns to b(g.g') defined by (14) and refers to the definitions in

A A

Appendix A, it is easy to show that as r approaches r’,

Bk (Kz')
b(r.r') ~ 33 K (K0 (z-2)  °

Using this in (18) gives

B k (Kz') ,
I(r, ') ~ Splz—t’) . (19)
32¢(z') k, (K, 0) (z'-z)

: Notice the singularity (z'-z) ~, as z = z’, in this form of I. This is

B
ror et bt

precisely the amount of singularity needed, when combined with &°'(t-t’), to
produce the required 3-dimensional distribution 8(r-r'). Recall that as
z 9z', £ >r' along the common ray and t = t(K,z) - (K, z') = ¢'. In

Appendix E the following is establisheds if




p=|r-zc'| sgn (z -2'), then
8 = ) F s = F s

lim P _ n(z')

z—>z' z-2' k'(K.z')

We use these two results to rewrite the singular portion of (19), dropping
the subscript B for now,

§'(x-x') _  =al(z') 8'(p)
z'-z S ¢ ) -p *

(20)

We now verify that -8'(p)/p behaves like 2m 8(r-r’) by integrating it

against an arbitrary differentiable function f(r) over an e-sphere centered

' at r’,
:: n an €
[I av f(g)%’l = [de sin® ldo[dpp f(s)sis)

0

g Jz-zr'|<e 0 °

3

b

E n/2 an e

$ =[d93in9[d¢[dp[pf(£)]6—_](_L)

i 0 0 -2

S

V ’

g = 2rn [p £f()] | = 2n f(r") .

[.; =0

:

.

:

-4
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Note, in the second step, the compensating change of limits in the © and p
integrals. In the last step we used the sifting property (17) of 8'(p). In

the sense of 3-dimensional distributions, we have established

= 2n8(z-zr') .

Using this and (20) in (19), and returning to our SB notation, we have at

last

, B n c(0) ,
I(r, ') m SB(E“E ) .

For this to represent 88(5—2') we are led to define amplitude B as

. 16 , (K, 0) 16 {1-8°

oY () B T () . (21)

This completes the definition of our inversion operator W in (10).

Applying W to (9) gives our inversion for a(r’),

, 16 -2iwt(K,2')
alz’) ~ —ro I I a’e ldw Ji-g* 2ier(Kez ug (£, w) (22)

where K is defined implicitly by

e - . T e e N - «
K X . e SIS LR K
- .. » N AN “~ ~
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|§'~§|=KE(K.2')=K[—dL—— .
0 an(r)-K’

As discussed in BCH, once we surrender knowledge of the low frequency
input information, we cannot obtain output trend information. It is to be
hoped that (by iteration if necessary) our c(z) reference velocity is an
adequate approximation of the trend to the depths of interest. What we can
obtain from band-limited information is a perturbation correction consistent
with the model of jumps across a series of interfaces. We determine the
approximate location of these interfaces as well as the approximate value of
the reflection coefficient at the interfaces. This information is summed up

in the reflectivity function,

= J R, . 2
g =72 RJSB(sJ) (23)

th
where sj is a (local) arclength variable measured normally from the j

interface and R, is the normal reflection coefficient of that interface.
J
Clearly, knowledge of B is equivalent to knowledge of reflector location and

the normal reflection coefficient (see equation (44) below). In turn the

latter allows direct computation of the jump in ¢ across the reflector.

According to the theory developed in Cohen and Bleistein (1979b) and
reviewed in BCH, we can obtain B from a by inserting a factor of iw/2c¢(z) in

(22) to obtain (after dropping the primes):
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Verification of Algorithm

2. R At

In order to verify the feasibility of the algorithm in (24), we first

L EmP.r.t.

obtain an expression for the Kirchhoff representation of data ug- Such data
employs the high frequency assumption (by using the multi-dimensional WKB
representation of the incident, reflected and transmitted fields), but does
not make the Born approximation of small reflection coefficient. Thus, if
we can show asymptotic equality in (24) for such data, our algorithm is

likely to be quite robust for large contrast interfaces.

It remains to decide on the surfaces to use in computing the Kirchhoff

approximation to us. For ease of ©presentation, we carry out our

calculations for the general cylindrical (i.e. y independent) surface:
z = h(x) . (25)

With a little more effort the verification can be dome for a quite general

reflecting surface.

In Appendix C, we show that the back scatter at ¢ from (25) has the

Kirchhoff (high frequency) representation:

24 AAaeSass

. -’ z
;. us(g.m) ~ 2iw I [ a’y Jl+h"(!)‘yRS ez“""C(x ) (26)
¢
r
2
& subject to

3 |z - ¢] = RE(R, ), 7 = h(®) . (27)

[. Here we have used bars to distinguish the spatial variable from the output
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variables in the inversion formula (24) and have also introduced the
quantities:
[EQ—L— ks(i,i) ]

E(K, 7)
y = , (28)

c(0) Y1+n'®

S = 1 , (29)

167"k, (K, 0k, (K, 2)E(X, HR(K, 2)

and the (non-normal) reflection coefficient,

: Y71, I | 1 (30)
R S m— = + —— — .
¢ T, v, = sgnly) | v - -

In turn, c,(z) denotes the actual velocity below the reflector, Z = h(X).

that is:

c‘(z) = ¢(z) + Ac (31)

where Ac is not accounted for by the stratified referemce profile c(2z).

Al

Obviously determining R is tantamount to determining Ac or c,(z).

E; Putting data, ug given by (26), into (24) leads to
:- -16 2 2 a_
: B ~ oriyeray J a0 o’ [ [’ [ [
(32)
I. ¢
3 . J;xz E+h,3 'YRS e21o)[1.'(K.2) - t(po)] .
- Our goal is to show that the output of this expression does indeed represent
}-
L]

the reflecting surface.

- 15 -
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We now carry out stationary phase in X, ¥, &, n (see Appendix D for

details) and obtain the stationarity conditions:

§F=n=y ., (33)
¥ - & =-sgn(h’) K E(K,Z) , (34)

and
x -t =- sgn(h’) K E(K,z) . (35)

These imply:

g-g-2am] (36)
2
J1+h'

(KT = ——— (37

where again Z = h(X).

Geometrically, these conditions confirm the cylindrical nature of our
reflector and show that the output point (x,z) lies on a specular ray.

Furthermore (33-35) yield

1 1
-1 --1 8
Y o 'Yl c1 (3)

which, in turn, imply that R reduces to the normal reflection coefficient,

A
S

. '-.... _‘.'_..'. - - l., .'_ .._. ._--..
O
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R=R = — (39)

Completing the stationary phase analysis (again see Appendix D) we find

that
2 2 2
e - 16nn (2) J1+h R S JI—K . I du e2im[t(i,z) - (K, 2)] (40)
- c(0) ||det(§..)|
1)
Heren
det (3. ) = 1 (a+'H*  a(2ne [ 11 ] .
H E(K, 2)E(K,2z) | H(K, z)H(K, 2) L H(K,z) H(K32)
(41)

However, the final integration in w, yields a delta function whose argument
can be transformed (using the relationships in Appendix A) to arclength

along rays:

I do eZim[t(x'Z) - k2l nSB[t(i.i) - (K, 2)]

nc(0) aB[G(i.z) - G(K, z)]

_ (42)
k’(K,z)
nc(0) —— 6.0z - Z]
2 B
n (z)

1 =
nc(0) ;T;T'sB[S(Z) s(z)] .
Here the last equality involving the ray arclength variable follows from
(A-8) and Appendix B. Ve may note that since z = Z when the delta function

"acts,” the stationarity conditions (33-35) imply that the output point

(x,2) coincides with the specular point (X,%Z) = (X, h(¥)). Furthermore,
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when z = T the second term in the large square brackets in (41) drops out

and hence using the definition (29), w¢ -~ e that

S - 1 . (43)

[IEetZ!..)I 167 (1+h' )k (K, 0)k_ (K, 7)
1] 3 3

Hence (40) reduces to

Rnn(!)
B(r) ~ 6ls(z)-s(Z)]

lim? &, & 5)

(44)

=R 8ls(z)-s(Z)] .
n

Here, the last step follows from (37).

In summary, when the Kirchhoff data ug for a single reflecting surface
Z = h(x) is put into (24) and the computations are carried out
asymptotically, the inversion algorithm faithfully reproduces the surface.
Moreover, if a linear combination of such data, representing several such
surfaces, were inserted into (24) then, in principle, the algorithm could
reproduce an appropriate sum of responses as in (23). However, since the
background c(z) would presumably not be exact beneath the first reflector,

there would be some distortion introduced into the second and subsequent

reflectors. This issue was discussed in Hagin and Cohen, 1984.

_18_

e e A I I




T':F-’, oy

A

RENARKS ON DATA PROCESS ING

The algorithm for the reflectivity function derived in the previous

sections is

( ) 5 8i dz l-xz d -Zio\‘C(K, z)
Blx,2) ~ =6y (D) 3 woe

. [dt Ug (1, 8) et (45)
0

|5“ ;' =KE(K.Z) .

Here Ug is the backscatter time data observed on an areal array. For
actual data processing, it is convenient to "fold” the unphysical negative
frequencies onto the positive ones by replacing o by —o on the interval (-
©,0). At the same time, we introduce the physical frequency variable

(measured in Hz):

f = (46)

w
2n
and explicitly acknowledge the bandlimiting by introducing F(f), a tapered

high pass filter. After these changes, we have:

- 19 -
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+ Im I af £ F(p) o Hmifr(Kz) :
0 .

(47) A

- | aruge g SZHE a

Y K

E

|x - ] = KE(x,2) .

In practice, areal observations are oftenm not available and instead only
a2 linear set of data is used. In this case we cannot hope to recomstruct a
three dimensional image of the subsurface and instead seek a two dimensional
slice, B(x,0,z) = B(x,z), consistent with the data available. Since the

data is now independent of n,

Ug(t,8) = Ug(t,£,0 = Ug(t,8) (48)

and we may carry out an additional stationary phase calculation in n. The

stationarity condition is

n=y (49)

and the analogue of (45) is found to be (see Appendix D for details):
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p(x,z) ~ ——— | d& J}l—xz)E(K.z) .
lnc(O) c(z)
do J;;-e -2iwt(K, z) (50)
Idt U (6. 8) 1,
0

|x-g| = KE(K,2) ,

while (47) becomes:

32n

Wc(z)

(Re - Im) Idf F F(f) ¢ 4mift(K, z)
0

B(x,2) ~ [dé V-8 E(K2) .

(51

_[at U (e, 8) e2MEE
0

|!"§‘ = KE(K’Z) .

The basic concepts of reducing (51) to a computer code are the same as
those discussed in BG for the algorithm presented there. Briefly, the t and
f integrals are performed routinely using an efficient FFT algorithm. The
main complication inm (51) 1lies in the expressions E(K,2z) and <t(K,z), both
being integrals defined by (A-4) and (8) respectively. This is a bit subtle
in that the parameter K (see Appendix B) can be viewed as determining the
starting angle for a ray connecting the surface point (¥,0) to data point
(x,z) in (51). Therefore, for a given offset lx-gl. K is defined by the

implicit relation |x-§|== KE(K,z). In computation this issue is handled

- 21 -
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quite efficiently by two tables for evaluating t(K,z) and the amplitude

(involving E in (51)) as functions of |x-&| and z.

The computation time of the resulting algorithm, as pointed out in BG,

is comparable to a standard k-f migration algorithm with constant reference

speed.
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CONCLUS IONS

We have presented the derivation of an inversion algorithm for
backscattered ("stacked”) seismic data. We made four major assumptions:
(i) the acoustic wave equation is an adequate model, (ii) stacked data has
amplitude information worth preserving fairly accurately, (iii) the actual
reflectivity coefficients can be adequately modeled as perturbations from a
continuous reference velocity which depends only on the depth variable, (iv)
the subsurface can be adequately modeled as a series of layers with jump

discontinuities in the velocity (or impedance) at these layers.

The last assumption is unavoidable given the nature of the high pass (on
the exploration scale) dats collected in the field. The third assumption is
inherent in our approach although, as pointed out above, the algorithm can
be expected to be robust even when this assumption is violated. Also the
algorithm presented here represents a considerable improvement over earlier
algorithms, such as Cohen and Bleistein [1979a), which perturbed from a

constant reference velocity.

On the other hand, weakening of the first two assumptions seems eminently

feasible and we hope to apply the techniques expanded in this article to

F both inversion of offset data ("inversion before stack”) and to equations
- wvhich more accurately describe the wave propagation in the earth.
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It is already known (see BG) that algorithms with the structure of the

one presented here are numerically stable and are computationally efficient

relative to other seismic data processing algorithms.
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APPENDIX A

NOTATIONS AND IDENTITIES

k,(K.z)

D(K» z) =

E(K,z) =

F(K,z) =

G(K,z) =

|
S

c(0)
n(z) = =

0

S

Jn’(z) -k

k, (K Daf

ar
T (KD

k(KD

X

n’(
k (
0’

c(0)z(K, z)

(A-1)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)
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2
A(K,z) = “,—(Q—d-r- , (A-T7)
k3(x.()
0

_ | n(DNd _
s(K,z) = ?{f%‘ : (A-8)

0

Similar quantities occur in the t-p theory, see Diebold and Stoffa

[1981]. Among the many relations which link these quantities, we cite below

;
)

those that are useful in carrying out the calculations presented in this

paper and its appendices. R

First of all, from (A-2) it follows that

R,

D+K2E

]
Q

(A-9)

3
E+KF

n
=

(A-10)

L. te r 4 0

Next we cite the k and z partial derivatives of D, E and G which follow

respectively from use of

ok
3 K
el 'k_, (A-11)

and the Fundamental Theorem of calculus:

D, =-KE , D =k (K,z) , (A-12)
K z 3




KF 1 (A-13)

’éﬂ

G. = KH , G =2_ (A-14)

Finally, from (A-13) and (A-9) it follows that

(KE)x =R . (A-15)
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APPENDIX B .

THE STRATIFIED MEDIA GREEN’S FUNCTION

Using Keller’s [1978] “"ray method”, developed in the 1950's, we seek a

high frequency approximation, =

g(x,2z) ~ Alx, 2) iwe(g 2) » X = (x,y) (B-1) ”!!
ﬂj
which asymptotically satisfies the Helmholtz equation, {;
2 2
Vig+——3g = -5(x-¢) 8(z) , & = (&n) . (B-2)
c (z)

To complete the specification of g, we insist that it behave like the free
space (i.e. constant c) Green's function as the field point, (x,2),

approaches the source point, (& 0). This entails the conditions,

1
r 9OR/c(0) , A-)m (B-3)
as R 20, where
R = ezl + 2 . (B-4)

We substitute (B-1) into (B-2) and separately equate the coefficients of

o’ and o to zero (this is the high frequency approximation) giving rise to

the eikonal equation,
Ek-k=n(z) , k=¢c(0) Vx , n= (B-5)

and the transport equation,

- 29 -
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dl -

2k -VA+(V-K A=0 . (B-6)

The former equation can be solved by the method of characteristics (see

Bleistein, 1984) which reduces the problem to the solution of a system of

ordinary differential equations. The first of these equations are:

dx dz

% -F: 3=k ¢+ E=(.k) , k= (KEK) (B-7)
dk dk,
el o , o= "ann (z) (B-8)

which define the rays; o being the ray parameter. The source term in (B-2)

makes
x(0) =¢ , z(0) =0 , (B-9)

a natural choice as initial data for (B-7). The data for k(0) consists of

an arbitrary unit vector (cf. (B-5), noting that n(0) = 1). To be specific

we choose

K(0) arbitrary , k,6(0) = Jl-Kz (B-10)

where we have introduced

K=|g] =)% +x . (B-11)

From (B-10) and the fact that we are not considering turned rays here, it
follows that K = (k,, k,) can be viewed as the direction numbers of the rays

initiating from (£, n, 0).
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Using (B-6) and (B-7) we find

2 = (V- k) A=0

which together with the data (B-3) completes the

(B-12)

(B-13)

specification of g,

expressed in (B-1), in terms of a system of ordinary differential equationms.

Proceeding to the analysis, we first note that by (B-8),

henceforth we simply write K for this constant vector.

equation (B-5) gives us

k (K,z) = §yn° - K .,
Then (B-7) yields
dx K
T n - K
or
x - ¢ = K E(K,2)

where E is defined by (A-4). Similarly, we find

1
T = WG(K.Z)

where G is defined by (A-6).

K(0), so

Then the eikonal

(B-14)

(B-15)

(B-16)

(B-17)
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If we introduce the ray Jacobian,

8(5. Z)
and use the fact that
aJ
e IV-.-x , (B-19)
then the transport equation (B—6) can be recast as
A F = constant . (B-20)

Thus

C@L

A F = 1im A {J_ (B-21)

RS0
which by (B-3) implies that ".
A=-11im J,R . (B-22) by
G R0 Qﬂ
.."1
We now indicate how to obtain the partial derivatives which are the i*
-1

elements of J.
First we take the reciprocal of the second equation in (B~7) and 'J
. B
integrate to get ]

L S
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We think of z = z(K,0), differentiate this expression for o and use bc/akj =

0 to obtain

% - kjk: F (B-23)

Similarly from (B-16), and using (B-23), one obtains

3T - B8y o j=1,2 (B-24)

Since dx/dc and 9z/3c are given directly by (B-7), we are now able to form

J. A short calculation, involving the use of (A-10) yields

J =%k E H . (B-25)

It is easy to show that as R -0 (equivalently ¢ —0).
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T o (B-26)

In the same limit, (B-14) implies that

K,k (K0) = Y1k = z/R (B-27)
R
so that '
b
3 2 =4

R R ~

]
Then (B-22) gives \
A = 1 . 1 X (B-29) .

o

Ik’(xa Z)E(KIZ)n(xn Z) 4n Ik’(x.())

Since A and t depend only on K, we need only employ the magnitude of (B-16)

o . SN

in the sequel:
|z-¢] = KE(K,z) . (B-30)

Bquation (B-14), (B-17), (B-29) and (B-30) are equivalent to equations (3-8)

of the text.

e S LA
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Finally, we relate our parameter o along the rays to the corresponding

L e anie e ome
AN N

arclength parameter. From (B-7) we have

cam e 2T

dx dx dz dz ) N
— e o e = K 4+ k’ =n (8—31)
do do do do

raaead Wil L
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(B-32)

Using the second equation in (B-7) once more, we find

(B-33)

or

(B-34)

a(haf
k, (K, Q)
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APPENDIX C

KIRCHHOFF DATA

.,
oY

.-

The derivation presented in Cohen and Bleistein [1983] applies here with

oy !

the constant ¢ Green’'s function used there being replaced with the c(z)
Green’s function derived in Appendix B. Thus, equation (8) of that paper

may be recast in our present mnotation as

PGNP ] IO

ug(z, 0) ~ [ ds R g%-gz(g.z;gfm) (C-1) g
s
with g defined by equations (3—6) and the reflection coefficient R being
defined by
-,
R=-—— (C-2)
Y+,
where
. _ 1 _ 1 _ ;
y=8 v , v, = ssanly) j Yy + :;— = ’ (C-3)
1

and # is the upward normal to S. Here c, is defined by (31).

Since g has the form given in (B-1)

g%-gz ~2in 8 - V¢ gz , (C-4)

subject to




ey

T R e ——

|x-&| = KE(K, 2) . (c-5)

Hence (B-1), with the definition of y givemn in (C-3) and that of S given by

(29), yields
g%-gz ~ 2iwyS °2imt . (C-6)

Thus (26) follows from the form, (25), of the surface. It remains to

establish the detailed calculation of y given in (28),

We have:

A £

<
|

?(]-ty-a M VG(‘, z)

(c-7)
__1_ (n',0,-1) [G axGaxG]
(")) Kax ° xa_y’ K9 z
J1+(h)
_ 1 _(n’,0,-1) , K
EPY () P eu—— [ h GK ax GK az Gz ] :
ll+(h)
From the constraint (C-5) we compute
KE
x-£ 9K _ z (C-8)

3K _ _
H‘—(_);pxn T '(EEFK

and then (28) follows from (C-7), (C-8) and the results of Appendix A.
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STATIONARY PHASE CALCULATIONS

Assuming that the phase, ¥#(x), has a single simple stationary point Xo/

_ (K _
V!(Es) = g ’ det rax.,- (!S) £0 , (b-1) .
the integral,
(A ~ Ieimi) Apa"s ., Al »1 (D-2)

can be evaluated asymptotically by the multidimensional stationary phase
formula, (see Bleistein [1984) or Bleistein and Handelsman [1975]).

A

$

explirl + i % sgn A sig (!ij)l ., (D-3)
)

1 ~ [ 18 ]n“___

Here A, ¥,, and (!ij)’ denote respectively the amplitude A, the phase &

sl
and the Hessian matrix, (a’!/axiaxj) evaluated at the stationary point,
x = x,. Further, sig (¥;;) denotes the signature of (!ij)' i.e. the number

of positive eigenvalues minus the number of negative eigenvalues.

If there were several stationmary points, (D-3) would be replaced by s sum

e e
RN

) over the contributions from these several points. If the Hessian matrix
;l vanished, (D-3) would have to be replaced by a more general result.
@
I+ . However, only (D-3) is required here.
-
o
g; In the second application of (D-5) to follow, n = 4. Although the
@

evaluation of the signature of a symbolic 4 x 4 matrix can be tedious or
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1

w

-]

1

SR A R L MR

o B
. . . O
Lt .
“* s » - - . - - - .

L N T RV . . -
. IAE VAP . TR Y . Septn T
PTG P PN S VI I S WSV SV G LS RN W Sl e




r'rv\"t e e e T TR IvT =~

impossible, our task is considerably simplified by the fact that our Hessian

matrices have the special form,

a 0 v 0
10 B 0 a _
”' v o 1 o » (D‘)
0 u 0 )
whence
2 2
det & = (ay - v )(Bs - a ) . (D-5)

To evaluate the signature, we need to determine the roots, o, of the

eigenvalue equation,
det (8 -~ o) =0 , (D-6)

where I is the identity matrix. From (D-5), we find at once:
2 3 3 3
det(§ - oI = [ c - (a+ty) o +ay ~ v ] [ c - (B+6) o + B8 - u ] . (D~7)

Thus,

v > ay , a > BS = sig (’i

i
(-]

j) = (D-8)

and similarly,

v’ >ay » uw<Bs = sig (¥, ) =% (D-9)

etc.

We now turn to the specific stationary phase calculations in the text.

We shall freely use the results of Appendix A without explicit citation.
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First we examine the phase in (12):

¥(¥) = G(K,z) - G(K',z') = ¢c(0)[<(K,z)-v(K',2")]

where G, K, and K’ are defined by:

n’(
G(K,z) = k—'-zr% dr s
0

Iz - &) = KE(K,2) = KE , (D-11)
Iz’ - &] = K'E(X’,z’') = K'E’ . (D-12)

Variables x, z, x', and z' # z are viewed as fixed for this calculation.
Implicit differentiation of (D-11) with respect to §; yields (after

appealing to Appendix A),

K K

7

K

Using these results we have
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Y ] 3K ax'] e A
§. ==——=6 [—‘- =—=—_1_ ' . (D-13)
KT O TN E E

To obtain our stationarity condition we set §; = 0 and have

Using this result with (D-11) and (D-12) leads to

K =K' . (D-14)

This condition says that the critical value of ¢ is such that the points
r = (x,z) and £’ = (x’,z') lie on the same ray emanating from (§,0). See

Fig. 1 above. We sybolically denote this stationmarity choice of ¢ by §s°

We now proceed to calculate the Hessian matrix (!ij). Differentiating

expression (D-13) with respect to Cj leads to

2

- 0% [%._.2_ - E;% .
¥, = I 85 £ ~ Eiky B’

= sij e - kikj Y .

We have again appealed to results in Appendix A. It now follows that

Lo a’s a’a’a MR _ -



e - Koy -k kv
det (!ij) = det s
-klkzy e - k"y
2
= e’ - ¢ sz = g (e -Ky)

=[%-1—'] é‘fv-x’%_%”
=[%':T'] E'-El.—- E_%”
-+ -

_E'-E H' -H
“TE Tm

Note det(!ij) > O when z # z' since E and H are z integrals with positive
integrands (see Appendix A). Similsarly, in expanding det(!ij - o) one

finds eigenvalues

E' - E _ B -®

and therefore concludes that sig (!ij) =2 sgn (z'-z). Note that

¥
*
Al

4

2t

ei ;-sig(!ij) ) i ; sgn (z'-z)

c =1i sgn (2'-2) .

WY
o' s?
&«

I

Using these results in (D-3) leads to the following asymptotic (large w)

approximation to the & integral in (12):
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B(rr,g) e2ivln(E2) - w(K 2]

¢’(2) k(K0 k (K2) E(K,2) H(K,2)

in c(0) sgn (z'-2) (EE'HR’) 1/

w [(E-E') (H-H"))

1/3

We now turn to the stationary phase evaluation of (32) in the four

variables X, ¥, £, n. Here the phase is

? =G(K2) - G(K, z) = c(0)[x(K,Z) - =(K, z2)) (D-15)

subject to the usual constraints

Ix - | =KE(K2) , |2-¢&|=KEEKD . (D-16)

This stationary phase evaluation is somewhat more difficult because 2

depends on X:

zZ = h(x) , (D-17)

; ﬂ:(ﬁ)xﬂ+ﬁ =ﬁa;x_+x_hl , (D-18)
. ~ ~ 2 ~ =
‘ P ax o k’
$O

. L —f:f - —-—]_m (D-19)
5 X KER k,H

:

: where we use notations like

s

{

)

L.
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E = E(K, %) (D-20)

for quantities which depend on K and Z. The remaining partials of K and K
are simpler since Z does not depend on ¥, &, or y, and since z is a

completely independent variable:

a—i :.-m , .a_i. =§ , ces (D—21)
dy KEH 3t KEH

These results allow one to compute:

X K z j
_ —2 3, _ h
_xt Kk ht + B (Z) ]
E i K, |-
(D-22) .
- - i
= — + s h'’ »
E -
S . R ,gz_:i_ﬁ-* , § =2¥_nv {
T g E E " E E
f The ¥, n derivatives give rise to the simple stationarity conditions:
E! ¥=n=y . (D-23) ’
. :
p. c
: Hence the constraints (D-16) reduce to
C ]i
3 = - ¢] = KE(K,2) , Iz - ¢} = RER, D , (D-24) ]
- .3
L, which can be rewritten as
3
h’,
F’ x-¢ = pkKE , p = ggn(x-f) (D-25) ?
4
- 1
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b . A
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i-t = 5KE , 7 ® sgn(Z-&) . (D-26)
These results allow us to simplify the remaining partials in (D-22) to

!i =ik + k b’ (D-27)

and

[
1
i
(g1}
+
=
[

< = D-28
!y ( )

For stationarity, we must have

g =9 =- sgn(h’) (D-29)
and then also

E=K=%kh' . (D-30)

The latter equality allows us to determine that

po2@ ] g @ (D-31)
J1+h" J1+h"

Finally (D-29) allows us to restate (D-25), (D-26) as
x - & =- KE(K z) sgn(h’) (D-32)
and

x - ¢ = -KE(K %) sgn(h’) . (D-33)

At the stationary point, the phase is
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!s = G(ipi) - G(i' Z)

T N e e U P U DN Ty Ny . T R T TR I T T R R R R TR TR TR T TR TR TR TR T T T e

.

N

(D-34)

Further, a number of terms of the Hessian matrix vanish because of (D-23)

leaving us with

!ii 0 !i§ 0
_ o 3__ 0 3
(!ij) = ¥y ¥n
0 ] 0
3 43
- 0
!Yﬂ ‘ﬂﬂ ]
which has the form (D-4) with
2 3
- = ( - . »
v ay !xg L] !§§)|s
and
2 3
- = (! - - —— .
v - By n ~ Y55 Yoy .

We observe that (D-19) and the stationarity conditions yield

i' =E—£—’—ILI-=E(1+11")
Tl @ # il
and similarly
ai| __E 3K
(238 PR B 1)

These facts allow to evaluate (D-36) as

. i = -sgn(h’)

=B
n(ip z)

(D-35)

(D-36)

(D-37)

(D-38)

(D-39)
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v - ay = (1+n'H’? , n(@n"

N ] (D-40)

1
H(K, z)H(K, z) ’__1+h,z[ﬂ(l_(.z) H(E, z)

and (D-37) as

u - py = 1 >0 . (D-41)

E(K, 2) E(K, 7)

Thus, "near” the reflector, z = Z, both v> ) ay, u’ > B5 hold and from

(D-8) we have sig (!ij) = 0. Finally, applying all these results to the

integral given by (32) leads to the approximation (40).
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APPENDIX E

A 1-DINENSIONAL DISTRIBUTION

In (19) we were lead to the singnlar form

§'(z-t') _ 1
z-z' T z-z'

Ed? s(r-t’) . (E-1)

This requires some careful interpretation since as z > z2’, Tt - t' and hence

the form is very singular at the point at which the "action” takes place.

We here first show that, with

p = |r-r'| sgn (z-z") , (E-2)
we have
(z') !
. p _ n(z B 3
llm z_z, = kﬁ’ﬂ » (E 3) ‘-
3
z >z’ h
{
_P__ = p = ’ —
lim Py lim oy c(z’) . (E-4)
@ z Dz’ T 2’
lt o
; '
L"L: To establish (E-3), we appeal to (B-16) and note that since r and r’
M 1
4 are on the same ray: 3
¢
3
b
> .
b '
L’ -
¥
p:
1
X
'I
'A
f
.
3
d
.
1 - -
! 48




-z’ = (x,2) - (x',2') =

Hence as z 9z’;

1/a

(E-5)

2 /3
N [ . K o+ 1 ] - n(z') .
n (z')-K k’(l,z')

Using this result and (E-2) establishes (E-3).

To obtain (E~4) we use (A-6) to get

' _ 1 n’( d
z-z' c(0)(z-z") k'(K.!!

Using this together with (E-3) establishes (E-4).
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- Applying (E-4) we have

s

§(z—=’) 8lp/c(z’)] = c(z') 8(p)

{
- d dp d '
& 807 = g S

d
c(z’) E[c(z')&(p)l :
(E-6)

¢ (z)8'(p) .

2 gy &
) 'z £ 8(p

This result, (E-6), and (E-3) are combined in the main text to further

interpret the singunlar expression (E-1).
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Figure 1: Two rays (solid lines) comnecting an arbitrary surface point 14
to r and r’'; and the single ray emanating from point ;s
determined by stationary phase.
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